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Società Italiana di Fisica
Springer-Verlag 2000

Structure of spin polarons in the t-t′-t′′-Jz model
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Abstract. We calculate the Green function in the t-t′-t′′-Jz model and analyze the deformation of the
quantum Néel state in the presence of a moving hole. Solving the problem in a self-consistent Born approx-
imation and using Reiter’s wave function we have found various spin correlation functions. We show that
the different sign of hopping elements between the hole- and electron-doped system of high-Tc cuprates is
responsible for the sharp difference of the polaron structure between the two systems with antiferromag-
netism stabilized in the electron-doped case by carriers moving mainly on one sublattice.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions

1 Introduction

Since the discovery of the high-Tc superconductors [1]
there has been intense theoretical and experimental ef-
fort to find an accurate description of the properties of
charge carriers in CuO2 planes of high-temperature super-
conducting oxides (HTSO). The simplest approximation
to the low-energy electronic states of strongly correlated
systems is produced by the t-J model. Here, the antiferro-
magnetic (AF) correlations lead to the spectral functions
with a single quasiparticle (QP) peak with low disper-
sion and a broad incoherent background at higher energies
[2,3]. The extended t-t′-J [4,5] and t-t′-t′′-J [6] models,
with the effective parameters t′ and t′′ derived from the
multi-band tight-binding models [7], are able to reproduce
the dispersion of low energy QP states in reasonable agree-
ment with the photoemission measurements [8] of insulat-
ing Sr2CuO2Cl2. The dynamics of holes was also studied
in the simpler t-Jz model using numerical methods [9,10]
and the pairing of holes was considered [3,11].

The main purpose of this work is to use Reiter’s wave
function [12] and calculate various correlation functions
for different values of the superexchange interaction J .
Here, we lean heavily on the work done in the context
of the t-J and t-Jz models by Ramšak and Horsch (see
Refs. [10,13]). We study the spin polaron in the slave
fermion approach using a self-consistent Born approxima-
tion (SCBA) to evaluate the Green function [14,15]. This
approach was successful in reproducing the results of exact
diagonalization [16]. Although in the limit J → 0 many
magnon terms have to be included and the Green function
is momentum dependent, it is possible to evaluate some
correlation functions with the summation of noncrossing
diagrams to any order.
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Calculations of the deformation of the spin systems for
one [17] and two holes [18] in the two-dimensional (2D)
quantum AF state were performed by exact diagonaliza-
tion of small clusters. In the t-J model the correlation
functions describing the spatial structure of the spin po-
laron are power-law like leading to renormalization prob-
lems [19,10]. Here, the absence of spin fluctuations sim-
plifies the analytical treatment of carrier motion in an AF
background while the polaron shows an isotropic Gaussian
decay.

The paper is organized as follows. In Section 2 we de-
rive different correlation functions for the t-t′-t′′-Jz model.
The numerical results obtained using Reiter’s wave func-
tion are presented and analyzed in Section 3. In Section 4
we summarize the results and give general conclusions.

2 Model Hamiltonian

The extended Hubbard model with large on-site repulsion
U compared with the hopping elements t, t′, t′′ can be
transformed to the following t-t′-t′′-J model [6],

H = −t
∑
〈ij〉,σ

(c̃†iσ c̃jσ + H.c.)− t′
∑
〈〈ij〉〉,σ

(c̃†iσ c̃jσ + H.c.)

− t′′
∑

〈〈〈ij〉〉〉,σ
(c̃†iσ c̃jσ + H.c.)

− t2

U

∑
iσ

∑
j′ 6=j

(c̃†j′σni−σ c̃jσ − c̃
†
j′σ c̃

†
i−σ c̃iσ c̃j−σ)

+ J
∑
〈ij〉

[
Szi S

z
j +

α

2
(S+
i S
−
j + S−i S

+
j )
]
, (1)

where c̃iσ = ciσ(1 − ni−σ) while 〈ij〉, 〈〈ij〉〉, and 〈〈〈ij〉〉〉
represent the nearest-, second- and third-neighbors,
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respectively. The superexchange interactions are charac-
terized by the exchange coupling J = 4t2/U and the Ising
limit is given by α = 0. Here only the leading three-site
terms have been included [16] which are omitted in the
standard version of the t-J Hamiltonians [2].

Considering the motion of a single hole one has to im-
plement the constraint of no double occupancy. Here we
introduce the “slave fermion” representation for fermion
operators [20], c†iσ = hib

†
iσ, with biσ standing for a

Schwinger boson at site i, subject to the constraint that
h†ihi +

∑
σ b
†
iσbiσ = 1 at each site. This automatically

fulfills the condition of no double occupancy. Following
the standard procedure [2,14], considering mean-field the-
ory in the Schwinger bosons and neglecting an irrelevant
constant one finds the following Hamiltonian in the Ising
limit,

Hz =
∑
k

ε(k)h†khk +
∑
q

ω0a
†
qaq

+
∑
kq

[
Mk−qh

†
khk−qaq + H.c.

]
, (2)

where ω0 = 2Jz and Mk = zt√
N
γk with γk = 1

2 (cos kx +
cos ky) and z = 4 in a 2D case. Here, aq is Fourier trans-
formation of Schwinger bosons,

aq =
∑
i∈A

bi↓eiq·Ri +
∑
j∈B

bj↑eiq·Rj , (3)

where A and B are the sublattices of ↑- and ↓-spins in the
Néel state, respectively.

Moreover, the free band ε(k) for spinless hk fermions
is given by [5],

ε(k) = zt′ηk + zt′′γ2k +
zt2

U

(
zγ2

k − 1
)
, (4)

with ηk = cos kx cos ky. In the presence of the three-site
terms ∼ t2/U the width of the free dispersion diverges
Wε(k) →∞ in the limit J/|t| → ∞.

The Green function,

G(k, ω) =
1

ω − ε(k)−Σ(k, ω)
, (5)

with the self-energy Σ(k, ω) is calculated within the self-
consistent Born approximation,

Σ(k, ω) =
∑
q

M2
k−qG(k− q, ω − ω0). (6)

In Figure 1 we present the free hole bands for the
t-J model with three-site ∼ t2/U terms and for the ex-
tended t-J model for the realistic parameters for hole-
and electron-doped systems. As one can see, in the (0, 0)-
(π, π) direction ε(k) has a minimum at k = (π/2, π/2) for
all three parameter sets. At the (π, 0) point further hop-
pings lead to a minimum (maximum) of the free disper-
sion in the electron (hole) doped case, respectively. As a
result, the dispersion relation ε(k) has the lowest value at
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Fig. 1. Free hole bands calculated for Jz/|t| = 0.4 for the t-Jz

model with the three-site terms (solid line) and the t-t′-t′′-Jz

model with t′ = −0.3t, t′′ = 0.2t and t = 1 (dashed line),
t = −1 (dotted line).

the (π/2, π/2) point both for the t-J model with ∼ t2/U
terms and for the extended model for one added hole.
On the other hand, for parameters representing electron
doping one finds the lowest value of ε(k) for k = (π, 0).
Thus, for the electron (hole) doped CuO2 the single-carrier
ground state corresponds to quasiparticles with momen-
tum k = (π, 0) (k = (π/2, π/2)), respectively.

Unlike in the t-Jz model here we have momentum de-
pendent Green function leading to a more complex form of
various correlation functions. Calculating the Green func-
tion, one can obtain the Reiter’s wave function [12,13] of
the following form,

|Ψnk 〉 = Zk

[
h†k +

∑
q1

Mk1G(k1, ω1)h†k1
a†q1

+ ...

+
∑

q1...qn

Mk1G(k1, ω1)...Mkn

×G(kn, ωn)h†kna
†
q1
...a†qn

]
|0〉, (7)

with the momentum kn = k − q1 − ... − qn and energy
ωn = Ek − nω0. The QP energy is determined by Ek =
ε(k) +Σ(k, Ek), while |Ψnk 〉 is normalized to 1 for,

Zk =
1

1− ∂
∂ωΣ(k, ω)|ω=Ek

· (8)

When noncrossing diagrams are included the wave func-
tion |Ψnk 〉 is exact. In a two-sublattice antiferromagnet
with not very small J/t the QP moves mainly on one sub-
lattice. Thus, we consider the linear combinations,

|Ψnk±〉 = 2−1/2[|Ψnk 〉 ± |Ψnk+Q〉], (9)

where Q = (π, π) is the AF wave vector. As we evaluate
the correlation functions for a hole at the bottom of the
QP band only the real part of G(k, ωn) is nonzero.

3 Numerical results

The numerical calculations were performed for a
32 × 32 momentum-space mesh with energy resolution
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δω ∼ 10−3|t|. In the wave function (9) the terms up to
n = 50 were included for very small values of Jz/|t|.
We adopted the nearest-neighbor hopping |t| = 1 as the
energy unit. The sign of hopping elements changes be-
tween the hole and electron doping [21]. Here, we assume
t′ = −0.3t, t′′ = 0.2t with t = 1 (−1) corresponding to the
hole (electron) doping, respectively [22]. The above hop-
pings with t = 0.35 eV can reproduce measured dispersion
relation in Sr2CuO2Cl2 [4,8] and are consistent with the
band structure of Bi2Sr2CaCuO2O8+δ and YBa2Cu3O7−δ
compounds [23]. Similar parameters with t = −0.35 eV
were used by Kim et al. [22] to describe quasiparticle spec-
tra in electron doped Nd1.85Ce0.15CuO4 [24].

Knowing the wave function we can calculate various
correlation functions describing the deformation of the AF
order around a hole. First, we have to calculate the norm
N (n)

k to estimate where the wave function can be trun-
cated,

N (n)
k = 〈Ψ (n)

k,±|Ψ
(n)
k,±〉 =

n∑
m=1

A
(m)
k , (10)

where the distribution functions,

A
(m)
k = Zk

m∏
j=1

∑
q

M2
qG

2(q, ωj), (11)

for m > 0 and A(0)
k = Zk.

In order to estimate the number of magnon terms
needed in the wave function we calculated the distribu-
tion functions A(n)

k corresponding to a noncrossing dia-
gram with n magnons excited. The A(n)

k coefficients are
presented in Figure 2 for the extended t-Jz model with
realistic parameters for hole- and electron-doped HTSOs.
In the regime of strong coupling (Jz/|t| � 1) and for
parameters representing hole doped materials A(n)

k has a
maximum at a finite value n which increases with decreas-
ing Jz/|t| (see Fig. 2a). Similar behavior was found in the
t-Jz model (see Fig. 4 of Ref. [10]). Quite different depen-
dence of A(n)

k with n is found for electron doping (Fig. 2b)
where one finds its monotonous decrease with increasing
n for Jz/|t| even as small as 0.002.

The total number of magnons building up our spin
polaron in the Ising limit can be easily calculated as,

〈n〉 = 〈Ψ (n)
k,±|

∑
q

a†qaq|Ψ (n)
k,±〉 =

n∑
m=1

mA
(m)
k . (12)

The dependence of 〈n〉 with J/|t| is presented in Figure 3.
Both in the t-J model and for parameters representing
hole doping we have recovered the results by Ramšak and
Horsch [10] with 〈n〉 ≈ 1.4(|t|/Jz)1/3 consistent with the
string potential of overturned spins created by the car-
rier motion. For large Jz/|t| > 2 the asymptotic behavior
〈n〉 ∼ (|t|/Jz)2 is reached. Quite different dependence of
〈n〉 is found for parameters representing electron doping
where in the Jz/|t| → 0 limit much less magnons are ex-
cited with no simple scaling for Jz/|t| down to 0.002.
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Fig. 2. The distribution of the number of magnons A

(n)
k as

a function of n for various Jz/|t| calculated for t′ = −0.3t,
t′′ = 0.2t and (a) t = 1, (b) t = −1.
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Fig. 3. Average number of magnons 〈n〉 as a function of Jz/|t|
calculated for the t-Jz model (solid line) and the t-t′-t′′-Jz

model with t′ = −0.3t, t′′ = 0.2t and t = 1 (dashed line),
t = −1 (dotted line).

The distribution of magnons around a hole can be de-
fined by NR = 〈h†0h0a

†
RaR〉 where the Fourier transform,

a†R =
∑

q e−iqRa†q, and the average is calculated with re-
spect to the wave function (9), 〈...〉 = 〈Ψnk±|...|Ψnk±〉. The
explicit form of NR is presented in Appendix A. Now,
the size of a polaron can be characterized by the average
radius,

Rav = 〈n〉−1
∑
R

|R|NR (13)
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Fig. 4. The average radius (a) and the-root-mean-square ra-
dius (b) as a function of Jz/|t| calculated for the t-Jz model
(solid lines) and the t-t′-t′′-Jz model with t′ = −0.3t, t′′ = 0.2t
and t = 1 (dashed lines), t = −1 (dotted lines).

and the root-mean-square radius,

Rrms =

(
〈n〉−1

∑
R

|R|2NR

)1/2

(14)

Rav and Rrms as functions of Jz/|t| are shown in Figure 4.
For the t-Jz model and the hole-doped case of the ex-
tended model the root-mean-square radius of the polaron
for Jz < 0.1t can be fitted with Rrms = 1.07(t/J)0.154

and 1.07(t/J)0.161, respectively. The radius calculated for
the t-Jz model is slightly different than one evaluated by
Ramšak et al. in reference [10]. This difference is made by
the t2/U three-site terms which are small for Jz/t < 0.1.
In the case of the electron doped t-t′-t′′-Jz model for
0.002 < Jz/|t| < 0.1 we found the size of the polaron
increasing logarithmically with decreasing Jz/|t| and fit-
ted with Rrms = 0.226 ln(|t|/J) + 0.81 for Jz/|t| < 0.1.

Another correlation function describing the spatial dis-
tribution of spin around the hole is the average of the z
component of spin, SR = 〈h†0h0S

z
R〉, with SzR = eiQR(1

2 −
a†RaR). The explicit form of SR is given in Appendix A.
We have found a striking difference in the distribution of
spins when calculated for hole- and electron-doped sys-
tems. For our model with parameters representing hole
doping one can see a well visible polaron around a hole
with a negligible background contribution Sz0 ≈ 0.001
(see Fig. 5a), where Sz0 = lim|R|→∞ |SzR|. A very simi-
lar polaron was found by Ramšak and Horsch in the t-
Jz model (compare Fig. 5a with Fig. 9a of Ref. [10]). In

Fig. 5. Distribution of the z component of the spin SzR around
the moving hole for Jz/|t| = 0.01 found for the t-t′-t′′-Jz model
with t′ = −0.3t, t′′ = 0.2t and t = 1 (a), t = −1 (b).

contrast, when parameters representing electron doping
are assumed one can find the SR function dominated by
large background Sz0 ≈ 0.1 (see Fig. 5b). As pointed out
by Ramšak and Horsch [10], 2Sz0 represents the difference
in the probability of the hole sitting on sublattice A or
B. Thus, even for Jz/|t| as small as 0.01 this difference of
visiting the two sublattices by an electron is about 20% in
the electron-doped case.

Finally, we check the conservation of the z component
of the total spin Sztot =

∑
R6=0 SR which consists of two

parts (see Eq. (20)). Sztot deviates from 0.5 by no more
than 10% in the whole range of Jz/|t| with the minimum
value in the intermediate-coupling regime Jz ≈ 0.1|t| for
the t-Jz and the hole-doped t-t′-t′′-Jz models whereas in
the electron doped case the minimum of Sztot is found
for Jz ≈ 0.01|t| (see Fig. 6). The Sz0 part of the spin-
correlation function SR (giving nonvanishing background
in Fig. 5) is presented in Figure 6b. In all three cases Sz0
decreases with decreasing spin stiffness and Sz0 → 0 for
Jz/|t| → 0. For realistic Jz/|t| = 0.4 the difference in the
probability of a carrier being on one or the other sublattice
is about 17%, 27%, and 62% for the t-Jz model, t-t′-t′′-Jz
model with hole- and electron doping, respectively. For the
t-Jz model the three-site terms enhance the tendency to-
wards one sublattice motion of a hole (compare solid line
in Fig. 6b with Fig. 11 of Ref. [10]). The results for the
electron-doped system indicates that an added electron
can stabilize the AF long range order by moving mainly
over one sublattice. This is not the case when an electron
is removed from the half filled system.
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Fig. 6. The total spin Sztot (a) and its component Sz0 (b) as
a function of Jz/|t| calculated for the t-Jz model (solid lines)
and the t-t′-t′′-Jz model with t′ = −0.3t, t′′ = 0.2t and t = 1
(dashed lines), t = −1 (dotted lines).

4 Conclusions

We have presented a systematic way to calculate various
spin correlation functions in the t-t′-t′′-Jz model. Empha-
sis was put on the strong-coupling limit, Jz/|t| � 1, where
the Reiter’s wave function is dominated by higher order
terms. As the magnon mode is dispersionless (but not the
Green function itself) it is possible to express correlation
function elements analytically and perform the summation
of respective diagrams to any order. Of key importance to
our approach is the vertex function Mk−q (see Eq. (2))
depending only on k− q momentum.

As presented in the previous section the spin polarons
found for the electron-doped case are qualitatively differ-
ent from those found for the hole-doped case or for the
t-J model [21]. For small Jz/|t| an added electron moves
mainly on one sublattice avoiding the disturbance of the
AF order while a hole propagates mainly by the exchange
of collective excitations. For realistic values of J/|t| ≈ 0.4
for HTSOs the average number of magnons excited in the
ground state is about one when a hole is added to the Néel
state and no more than 0.2 in the electron-doped case.

The main limitation of this approach is the absence of
spin fluctuations. A hole (electron) hops in a Néel state
creating a “string” of overturned spins which are not al-
lowed to flip spontaneously. The validity of ignoring the
propagation of spin excitations is justified by the fact that
in the limit Jz � |t| a linear potential left by turned
over spins [15] is weak making the propagation of a hole
(electron) not much restricted. However, for larger Jz the

mobility of a carrier is strongly restricted to one sublat-
tice. Moreover, in the t-J model one can find a well defined
quasiparticles but the size of a polaron characterized by
Rav and Rrms is diverging [10] while the wave function
can be evaluated numerically only to a few magnon terms
which is hardly enough in the limit J � |t|.

I thank A. M. Oleś and P. Horsch for useful discussions and ac-
knowledge the financial support by the Committee of Scientific
Research (KBN) of Poland, Project No. 2 P03B 175 14.

Appendix A: The spatial distribution functions

Below we present the analytical expressions of correlation
functions NR and SR evaluated in this paper. In the Ising
limit the distribution of magnons around a hole has the
following form,

NR =
1
N

∑
q1,q2

ei(q1−q2)R

×
n∑
p=1

[
p−1∑
m=1

W (p,m)(q1,q2) +W (p)(q1,q2)

]
, (15)

with,

W (p,m)(q1,q2) = A
(m−1)
k T

(m)
2k (q1,q2)

×
p∏

j=m+2

T
(j)
1k (q1,q2), (16)

for 0 < m < p and,

W (p)(q1,q2) = ZkMk−q1Mk−q2G(k− q1, ω1)

×G(k− q2, ω1)
p∏
j=2

T
(j)
1k (q1,q2). (17)

The functions T (j)
1(2)k(q1,q2) depend on the Green function

G(q, ω) and the hole-magnon vertex Mq as follows,

T
(j)
1k (q1,q2) =

∑
q

Mq−q1Mq−q2G(q− q1, ωj)

×G(q− q2, ωj), (18)

and,

T
(j)
2k (q1,q2) =

∑
q

M2
qMq−q1Mq−q2G

2(q, ωj)

× G(q− q1, ωj+1)G(q− q2, ωj+1). (19)

In a similar way one can evaluate the distribution of the
z component of the spin at a distance R from a hole,

SR = ±eiQR

[
Sz0 −

1
N

∑
q1,q2

ei(q1−q2)R
n∑
p=1

(−1)p

×
(
p−1∑
m=1

W (p,m)(q1,q2) +W (p)(q1,q2)

)]
, (20)
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with,

Sz0 =
1
2

n∑
j=0

(−1)jA(j)
k . (21)

The details of the construction rule for the diagrams in-
cluded in NR and SR can be found in the recent paper by
Ramšak and Horsch (see Ref. [10]).
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10. A. Ramšak, P. Horsch, Phys. Rev. B 57, 4308 (1998).
11. S. Trugman, Phys. Rev. B 37, 1597 (1988); B. Shraiman,

E. Siggia, Phys. Rev. Lett. 60, 740 (1988); A.L.
Chernyshev, P.W. Leung, Phys. Rev. B 60, 1592 (1999).

12. G.F. Reiter, Phys. Rev. B 49, 1536 (1994).
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